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INTRODUCTION 

Wolves (Canis lupus) were reintroduced in the northern Rocky Mountains (NRM) in 1995, and 

after rapid population growth were delisted from the endangered species list in 2011. Since that 

time, states in the NRM have agreed to maintain populations and breeding pairs (a male and 

female wolf with 2 surviving pups by December 31; USFWS 1994) above established minimums 

(≥150 wolves and ≥15 breeding pairs within each state). Montana estimates population size 

every year using patch occupancy models (POM; MacKenzie et al. 2002, Rich et al. 2013, Miller 

et al. 2013, Bradley et al. 2015), however, these estimates are sensitive to pack size and territory 

size, and were developed pre-harvest. Reliability of future estimates based on POM will be 

contingent on accurate information on territory size, overlap, and pack size, which are expected 

to be strongly affected by harvest. Additionally, breeding pairs, which has proven to be an 

ineffective measure of recruitment, are determined via direct counts. Federal funding for wolf 

monitoring has ended in states where wolves are delisted, and future monitoring will not be able 

to rely on intensive counts of the wolf population. Furthermore, intensive, field-based monitoring 

has become cumbersome and less effective since the population has grown. With the 

implementation of harvest, it is pertinent to predict the effects of harvest on the wolf population 

and continue to monitor to determine effectiveness of management actions to make informed 

decisions regarding hunting and trapping seasons.  

STUDY OBJECTIVES 

Our 4 study objectives are to: 

1. Improve estimation of recruitment. 

2. Improve and maintain calibration of wolf abundance estimates generated through POM. 

3. Develop a framework for dynamic, adaptive harvest management based on achievement 

of objectives 1 & 2. 

4. Design a targeted monitoring program to provide information needed for robust estimates 

and reduce uncertainty in the AHM paradigm over time. 

Two PhD students are addressing the 4 study objectives as part of Project 1 (Sarah Sells) and 

Project 2 (Allison Keever; Fig. 1). 

DELIVERABLES 

1. A method to estimate recruitment for Montana’s wolf population that is more cost 

effective and biologically sound than the breeding pair metric (Project 2, A. Keever). 



2. Models to estimate territory 

size and pack size that can keep 

POM estimates calibrated to 

changing environmental and 

management conditions for 

wolves in Montana (Project 1, 

S. Sells). 

3. An adaptive harvest 

management model that allows 

the formal assessment of 

various harvest regimes and reduces uncertainty over time to facilitate adaptive 

management of wolves (Project 2, A. Keever). 

4. A recommended monitoring program for wolves to maintain calibration of POM 

estimates, determine effectiveness of management actions, and facilitate learning in an 

adaptive framework (Projects 1 & 2). 

LOCATION 

This study encompasses wolf 

distribution in Montana and Idaho 

(Fig. 2). Additional data will come 

from Yellowstone National Park 

for the territory models developed 

under objective 2. 

 

  

Fig. 1.  Objectives for this project are being addressed under 2 

separate projects.  

Fig. 2. The project study area includes wolf distribution in Montana and 

Idaho, as well as Yellowstone.  



GENERAL PROGRESS 

Projects 1 & 2, Year 1: 

We (S. Sells & A. Keever) 

started our PhD programs 

in January 2015 (Fig. 3). 

Much of year 1 was 

devoted to literature 

reviews on animal 

behavior, carnivores, 

modeling, optimal 

foraging, etc. and 

determining approaches for the dissertations. We also formed and held multiple meetings with 

our committees, worked on completing coursework requirements, and finalized research 

statements. Additional efforts focused on communicating with wolf specialists, identifying target 

packs for collaring, managing collar orders and data, and helping coordinate contracts and 

capture plans for winter aerial captures for January and February 2016. We also met with wolf 

specialists in the field to learn more about the wolves in each region, and coordinated and held 

meetings with the specialists to plan future project efforts.  

Project 1 (S. Sells): In year 2, I continued most activities from year 1, including conducting 

literature searches, taking classes, holding committee meetings, communicating with wolf 

specialists, managing collar orders, managing data, etc. I also began working on the theoretical 

territory models. My primary focus was meeting project and university requirements and 

deadlines, including defending my proposal and passing my comprehensive exams. I also joined 

the wolf specialists to assist with a month of trapping.  

Year 3 was primarily devoted to preparing the theoretical territory models. I presented draft 

results at 5 conferences. In addition to completing more coursework, I continued working with 

MFWP and collar manufacturers as the point person on ordering collars, troubleshooting a 

growing set of issues with the collars, and managing collar records. I continued coordinating data 

management and collection from deployed collars and communicating with wolf specialists on 

all trapping and collar-related topics. I also spent 2 weeks assisting wolf specialists with 

trapping. 

Project 2 (A. Keever): In year 2 I continued literature reviews, completed coursework, and 

meeting university requirements. I defended my proposal and was studying for my 

comprehensive exams. Another focus was on the empirical recruitment model. I began 

developing the model that I had outlined in my proposal. I also spent 1 month assisting wolf 

specialists with trapping.  

Fig. 3. Project timeline. 



Year 3 I completed the empirical recruitment model code and tested the model with simulated 

data. Much of my time was spent compiling and formatting the data needed to estimate 

recruitment. I presented preliminary results at 2 conferences. I also passed my comprehensive 

exams and spent 2 weeks assisting wolf specialists with trapping.  

Deliverables and updates: Project deliverables will include an empirical recruitment model; 

theoretical territory, group size, and recruitment models; draft and final AHM models; and final 

territory and pack size models. We have been working on deliverables of the empirical 

recruitment model (A. Keever) and the theoretical territory models (S. Sells) towards meeting 

objectives 1 and 2. We each describe our progress towards these deliverables in this report. 

(Additional details on objectives 3 and 4 are available in the 2016 report.)  

DATA COLLECTION SUMMARY 

Trapping efforts by Montana Fish, Wildlife and Parks have continued since 2014:  

 There have been 66 successful captures directly related to this project through 2017. 

 Collars were deployed in approximately 46 packs (this number is fluid as wolves 

disperse).  

 Using ground and aerial captures: 

o 10 collars were deployed in 2014. 

o 14 collars were deployed in 2015. 

o 27 collars were deployed in 2016. 

o 16 collars were deployed in 2017. 

 These collars have yielded >26,000 locations of wolves (Fig. 4).  

 After collar removals, harvests, other mortalities, and some collar losses (e.g., through 

dropped collars), 28 collars remained deployed at the end of 2017.  

 Many of the collars began experiencing major performance issues in 2017, however. Of 

the 28 deployed collars, only 9 were functional as of December 2017 (see below). 

Collaring efforts will continue via ground and aerial captures through 2018. 

The project began experiencing a growing set of technical issues with collars in 2017. Many 

collars began failing to send reliable transmissions to the satellite service, and eventually many 

stopped transmitting altogether. After 3 months without a fix, a collar is considered to have 

malfunctioned and is deactivated. In summary: 

 20 collars have failed while deployed, 16 of which are still deployed. 

o 15 collars worked for 1 – 2.25 years before failing.  

 1 collar was recovered and had VHF failure. 

 2 collars were recovered and had battery failure. 

 12 collars are still deployed. 

o 4 collars worked for <1 year (4 – 11 months) before failing and are still deployed. 

o 1 collar never worked after deployment and was recently recovered.  



 3 more collars are approaching the 3 month deadline without a transmission and will be 

deactivated soon. 

 9 collars are functional or mostly functional as of December 2017. 

We are working with Lotek to return all collars that have not yet been deployed. These will be 

replaced with collars that are expected to provide better performance based on what Lotek has 

learned from these recent failures. We consider these collar failures and challenges all the more 

impetus to reduce needs for future collaring efforts; our work will help achieve this goal.  

  

Fig. 4. Locations of wolves collared for this project, 2014−2016. Colors represent different wolves. Note that some polygons 

include dispersal from original pack’s territory. 



PROGRESS ON OBJECTIVES 

Objective 1: Improve estimation of recruitment—Allison Keever, Project 2 

1.1 Background 

Estimating recruitment (i.e., number of young produced that survive to an age at which they 

contribute to the population) of wolves can be difficult due to their complex social structure. 

Wolves are cooperative breeders, and pack dynamics (e.g., pack tenure, breeder turnover, and 

number of non-breeding helpers) can affect recruitment and pup survival (e.g., Ausband et al. 

2015). Cooperative breeding often relies on the presence of non-breeding individuals that help 

raise offspring (Solomon and French 1997), and reduction in group size can lead to decreased 

recruitment in cooperative breeders (Sparkman et al. 2011, Stahler et al. 2013). Human-caused 

mortality through both direct and indirect means (Ausband et al. 2015) and prey biomass per 

wolf (Boertje and Stephenson 1992) have been shown to affect recruitment. As a result, it will be 

important to consider the effects of harvest, pack dynamics, wolf density, and prey availability 

on recruitment. 

Further challenges of estimating recruitment include the size of the wolf population and limited 

time and funding for monitoring. Currently, MFWP documents recruitment through visual 

counts of breeding pairs (a male and female wolf with 2 surviving pups by December 31; U.S. 

Fish and Wildlife Service 1994). These counts, however, are likely incomplete due to the large 

number of wolves in the population. Federal funding for wolf monitoring in Montana and Idaho 

is no longer available. States therefore fund their own monitoring programs, and future 

monitoring will not be able to rely on intensive counts. A breeding pair estimator (Mitchell et al. 

2008) could be used to estimate breeding pairs, but this requires knowing pack size; such data 

are hard to collect given the size of the wolf population. Additionally, the breeding pair metric is 

an ineffective measure of recruitment because it provides little insight into population growth 

rate or the level of harvest that could be sustained. Recruitment could be estimated by comparing 

visual counts at the den site to winter counts via aerial telemetry (Mech et al. 1998) or by 

marking pups at den sites (Mills et al. 2008). An alternative method could include non-invasive 

genetic sampling (Ausband et al. 2015) at predicted rendezvous sites (Ausband et al. 2010). 

These methods, however, may not be feasible on large scales due to budget and staff constraints. 

Existing monitoring efforts yield insufficient data to estimate recruitment using traditional 

methods; therefore a new approach is needed that does not rely on extensive data. 

1.2 Goals and General Approach 

Our objective is to develop an approach to estimate recruitment that is more tractable, cost 

effective, and biologically credible than the breeding pair metric. Collar and count data are 

currently collected for on-going monitoring, however these data may not be available or at least 

not as many data available moving forward. Therefore, our goal is to create a model that can be 



flexible in the amount of data required to estimate recruitment and also evaluate the accuracy and 

precision of estimates with varying amounts of data. Integrated population models can be a 

useful tool for demographic analyses from limited data sets, and can increase precision in 

estimates (Besbeas et al. 2002). We will develop a per capita integrated population model 

(hereafter IPM) to estimate recruitment and evaluate the relationship between recruitment and 

factors that may cause spatial and temporal variation in wolf recruitment. We will use collar, 

count and hunter survey data from 2007–2016 in Montana to estimate recruitment. We will also 

use a simulation study to evaluate how many data are needed to get reliable estimates using this 

method to see if it will be cost effective to implement. 

The resulting statistical model will relate covariates and recruitment. It will not, however, 

improve understanding of the mechanisms that cause recruitment to change. Recruitment 

depends on a pack’s success in breeding and giving birth, as well as litter size and pup survival. 

Whether a pack successfully breeds and gives birth or not is primarily determined by the survival 

of the breeding pair in the pack. Conversely, pup survival may be affected by helper presence, 

prey availability, disease outbreaks, and human-caused mortality (Goyal et al. 1986, Boertje and 

Stephenson 1992, Johnson et al. 1994, Mech and Goyal 1995, Fuller et al. 2003, Ausband et al. 

2015). Unfortunately, there are few data to estimate the contribution of those factors to overall 

pup recruitment, so we will also develop a mechanistic model of recruitment to theoretically 

explore the effects of human-caused mortality, prey availability, multiple litters per pack, disease 

outbreaks, and group size on the different components of recruitment. The probability a pack 

successfully breeds and reproduces, litter size per pack, and pup survival all determine pup 

recruitment. Hypotheses about how factors such as disease, harvest, or prey availability affect 

these parameters can be explored using liner or non-linear models and then multiplied together. 

Different models can be developed that represent different hypotheses. Those different 

hypotheses will result in different predictions of recruitment if those hypotheses were correct. 

The model predictions can be compared to estimated recruitment from the IPM to determine 

which hypotheses have most support.  

1.3 Methods 

We are currently developing the IPM model to estimate recruitment in program R (R Core Team 

2014) in a Bayesian framework using package R2jags (Su and Yajima 2015) to communicate 

with JAGS (Plummer 2003). The IPM model will allow us to evaluate the factors that cause 

spatial and temporal variation in recruitment and, through use of a simulation study, determine 

data requirements for estimating recruitment. Recruitment data are not available across Montana, 

so we will use the hunter survey, group count, and GPS and VHF collar data that are currently 

available from ongoing monitoring. The IPM will have a 1) POM model to estimate abundance, 

2) survival model, 3) recruitment model, 4) a population-level model to relate changes in 

abundance over time with survival and recruitment, and 5) a group-level model to relate changes 

in group size over time with survival and recruitment (Fig. 1.1). This IPM framework is unique 



in that it adds a group-level model to account for the social structure of wolves and its influence 

on recruitment. We are evaluating the efficacy of the IPM model by simulating data to test how 

many data are required for accurate estimates of recruitment. Then, we will use hunter survey, 

group count, and collar data to estimate recruitment across the state of Montana.  

1.3.1 POM model 

We will use the same occupancy modeling framework that MFWP currently applies across the 

state using hunter survey data to estimate abundance of the wolf population. We will use a 

dynamic false-positive occupancy model (MacKenzie et al. 2002; Miller et al. 2013, Rich et al. 

2013; Bradley et al. 2015) to estimate the area occupied by wolves. We will then use GPS collar 

data from 2008-2009 (Rich et al. 2012) to estimate mean territory size. The number of packs is 

then the area occupied by wolves divided by the mean territory size. To estimate abundance we 

will take the number of packs and multiply by the average group size of a wolf pack. Group size 

will be estimated from the group count data while accounting for observation error for each year. 

We will also account for territory overlap like MFWP does for their abundance estimates. 

Eventually, work from current research (Objective 2) on territory size and group size will be 

used in place of average territory and group size to improve estimates of abundance in the IPM 

model.   

1.3.2 Survival model 

We will estimate survival using a discrete-time proportional hazards model, or a complementary 

log-log (cloglog) model. We will use biologically relevant discrete periods for analyses such as 

Fig. 1.1. Simplified directed acyclic graph of a per capita integrated population model for wolves that includes population-

level and group-level state-space models. The boxes represent data sources and the circles represent parameters.  



the denning period (April-May), rendezvous period (June-August), and the hunting/trapping 

season (September-March). GPS and VHF collared wolves from 2007-2016 will provide the 

known-fate information needed to estimate survival. These data, however, may have inherent 

sampling bias. Most collared wolves from this time period are targeted because they are 

livestock conflict packs. These data would bias survival low. To account for this we could use an 

informative prior on survival and weight the collars so that research collars have more influence 

on the posterior estimate of survival than collars from livestock conflict packs. Or, we could also 

only use collars deployed for research purposes to account for this bias in survival.  

1.3.3 Recruitment model  

We will evaluate factors that explain the spatial and temporal variation in recruitment using 

generalized linear models with a log link function. We will develop a priori hypotheses 

regarding how factors such as human-caused mortality rates, landowner-type (e.g., public vs. 

private), road density, land cover type, elevation, and group size affect recruitment of wolves. 

We will test these hypotheses using the IPM in Montana.  

1.3.4 Population level 

Changes in abundance over time are a function of births, deaths, immigration, and emigration. 

We have information about abundance and survival for wolves in Montana, therefore we can 

essentially solve for recruitment. Because the pack is the reproductive unit, at the population 

level we will account for immigration and emigration by including colonization and extinction of 

packs which will be informed by the occupancy model. Lone wolves that immigrate into the 

population can be ignored. Wolves joining or dispersing from a pack will be accounted for at the 

group level.  

1.3.5 Group-level model  

A typical IPM framework does not account for animals with social structure and cooperative 

breeding. Therefore, we will add a group level model that explicitly accounts for the social 

structure of wolves. This framework allows us to estimate recruitment at the pack level as well as 

the population level which improves estimation of recruitment. We will also include dispersal 

from the pack modeled using recent literature on dispersal rates of wolves in the U.S. northern 

Rocky Mountains (Jimenez et al. 2017). Changes in group size will be a result of recruitment, 

survival, and dispersal.  

The main objective of this work is to provide a method to estimate recruitment that is more cost 

effective, which means it cannot require a lot of data. This framework requires group count data 

to estimate recruitment. These data, however, may be too costly to collect in the future. The IPM 

is flexible and could still estimate recruitment with only the population-level. Therefore, we will 

test the IPM without the group-level as well which would eliminate the need for group count 

data. 



1.3.6 Data simulation 

Our goal is to provide a model to estimate recruitment that is more cost effective. For a method 

to be cost effective, and therefore useful for monitoring, it cannot rely on a lot of data that are 

expensive to collect. To determine whether the IPM model would be useful in the future we 

evaluated the amount of data that would be needed to get reliable estimates of recruitment using 

a simulation study. We simulated a wolf population for 10 years and then sampled from the 

population. To do this we first generated 100 wolf packs using a Poisson distribution with an 

average pack size of 4 wolves. We then randomly generated survival, recruitment, and dispersal 

rates using a uniform distribution with a range of biologically realistic rates. This allowed for 

yearly variation in the demographic rates, which we could then record as our truth. The 

simulated wolves then survived and reproduced based on the demographic rates we generated, 

with stochasticity using Poisson and binomial distributions for reproduction and 

survival/dispersal, respectively. We then added up the number of wolves within packs to get 

truth for total abundance.  

After simulating the wolf population, we then randomly sampled 50, 25, and 12 packs of the 100 

for group count data. We also added observation error, so our sample of packs is also a sample of 

wolves within the pack. For survival data we used our truth survival for each year and generated 

50 known-fate observations of wolves incorporating stochasticity using the binomial distribution. 

We then sampled 20, 10, and 5 of those observations which represent our collar data. We used 

these data in the IPM model to estimate recruitment and determine how well it matched our truth 

we used to simulate the data. 

1.4 Preliminary Results 

With simulated data we know “truth,” and can compare our estimates to truth. We ran the IPM 

model with occupancy fixed to evaluate the amount collar and group count data needed for 

accurate estimates of recruitment. We also compared our estimates of survival, group size, and 

abundance to truth. We found that datasets with at least 10 collars and 25 group counts were 

precise for estimating recruitment (Fig. 1.2). Generally, all datasets except the dataset with 5 

collars and 12 group counts provided accurate estimates of recruitment with a % error of < 20% 

(Table 1.1). All datasets provided approximately the same accuracy of abundance estimates (Fig. 

1.3), and only the dataset with 5 collars resulted in inaccurate estimates of survival (Fig. 1.4).  

 



 

 Full dataset A dataset B 

dataset 

C dataset D dataset 

13.8% 18.0% 14.2% 19.4% 38.5% 

Fig. 1.2: Estimates of recruitment (pups per pack) generated from varying amounts of data compared to truth: full dataset 

(50 group counts; 20 collars), A dataset (25 group counts; 20 collars), B dataset (50 group counts; 10 collars), C dataset (25 

group counts; 10 collars), and D dataset (12 group counts; 5 collars). 

Fig. 1.3: Estimates of abundance generated from varying amounts of data compared to truth: full dataset (50 group counts; 

20 collars), A dataset (25 group counts; 20 collars), B dataset (50 group counts; 10 collars), C dataset (25 group counts; 10 

collars), and D dataset (12 group counts; 5 collars). 

Table 1.1: % error of recruitment estimates from truth from varying amounts of data: full dataset (50 group counts; 20 

collars), A dataset (25 group counts; 20 collars), B dataset (50 group counts; 10 collars), C dataset (25 group counts; 10 

collars), and D dataset (12 group counts; 5 collars). 



1.5 Summary and next steps  

The objective of this work is to provide a method to estimate recruitment that is both biologically 

credible and cost effective. The main determinant of whether this method will be cost effective is 

the amount of data required to estimate recruitment. The IPM can be a viable method to estimate 

recruitment because reliable estimates are generated using only 12-25 group counts and 10 

collars. Further, if group count data are too costly to collect, the model can be adjusted to 

eliminate the need for group count data by removing the group-level model. Our next step will 

be to test the model without the group-level and evaluate the accuracy of recruitment estimates. 

The tradeoff between resources spent collecting data and accuracy of estimates generated from 

those data can then be assessed.  

The other objective of this work was to provide a method that is more biologically credible than 

the breeding pair metric.  The breeding pair metric estimates the probability a pack contains a 

breeding pair and does not provide detailed information on recruitment. The IPM model, which 

has been developed to account for wolves’ social structure, is a method that provides accurate 

estimates of recruitment that we can use to answer biological questions about spatial and 

temporal variation in recruitment. This information can then be used to help inform harvest 

decisions.  

We have recently completed data formatting and will begin running models to estimate 

recruitment of wolves across Montana. We will test a priori hypotheses about the factors that 

cause spatial and temporal variation in recruitment and use model selection to determine which 

hypotheses have most support. Then, we will apply the model in Idaho using the same types of 

data sources and compare model estimates of recruitment with field-based recruitment data as an 

external test of the model. 

Fig. 1.4: Estimates of survival generated from varying amounts of data compared to truth: full dataset (50 group counts; 20 

collars), A dataset (25 group counts; 20 collars), B dataset (50 group counts; 10 collars), C dataset (25 group counts; 10 

collars), and D dataset (12 group counts; 5 collars). 



Objective 2: Improve and maintain calibration of wolf abundance estimates generated 

through POM—Sarah Sells, Project 1 

2.1 Introduction 

Monitoring is a critical, yet challenging, management tool for gray wolves. Since delisting of 

wolves in 2011, monitoring results help MFWP set management objectives and communicate 

with stakeholders and the public. Monitoring any large carnivore is challenging, however, due to 

their elusive nature and naturally low densities (Boitani et al. 2012). This is particularly true for 

wolves due to increasing populations, decreasing funding for monitoring, and changing 

behavioral dynamics with harvest. 

Abundance estimates are a key component of monitoring (Bradley et al. 2015). Abundance is 

currently estimated in Montana with 3 parameters: area occupied, average territory size, and 

annual average pack size (Fig. 2.1, Bradley et al. 2015). Area occupied is estimated with a Patch 

Occupancy Model (POM) based on hunter observations and field surveys (Miller et al. 2013, 

Bradley et al. 2015). Average territory size is assumed to be 600 km2 with minimal overlap, 

based on past work (Rich et al. 2012). Annual average pack size is estimated from monitoring 

results. Total abundance (N) is then calculated as: N = (area occupied x̅ territory size⁄ ) × x̅ pack.  

Whereas estimates of area occupied from POM are expected to be reliable (Miller et al. 2013, 

Bradley et al. 2015), reliability of abundance estimates hinge on key assumptions about territory 

size, territory overlap, and pack size (Bradley et al. 2015). Assumptions of fixed territory size 

and minimal overlap are simplistic; in 

reality, territories vary spatiotemporally 

(Uboni et al. 2015). This variability is likely 

even greater under harvest (Brainerd et al. 

2008). Meanwhile, pack size estimates 

assume all packs are located and accurately 

counted each year, which is no longer 

possible due to the number of packs and 

declining funding for monitoring (Bradley et 

al. 2015). Since implementation of harvest in 

2009, several factors have further 

compounded these challenges and decreased 

accuracy of pack size estimates. First, 

whereas larger packs are generally easier to 

find and monitor, average pack size has 

decreased since harvest began (Bradley et al. 

2015). Difficult-to-detect smaller packs may 

be more likely to be missed altogether, 

Fig. 2.1. Example of POM results (red indicates highest 

occupancy probability, green lowest), and methods for calculating 

abundance. Graphed abundance since 1994 is based on minimum 

counts (black bars) and POM-based estimates (white bars). 

(Adapted from Bradley et al. 2015.) 



biasing estimates of average pack size high. Conversely, incomplete pack counts, especially for 

larger packs, could bias estimates of average pack size low. Harvest and depredation removals 

also affect social and dispersal behavior (Adams et al. 2008, Brainerd et al. 2008, Ausband 

2015). Additionally, pack turnover is now greater than in populations with less human-caused 

mortality.  

Development of reliable methods to estimate territory size, territory overlap, and pack size is 

critical for accurate estimates of abundance. One means for developing models to estimate 

territories and pack sizes is an empirical modeling approach. This approach generally involves 

measuring and attempting to discern patterns in territory and pack size dynamics (e.g., Rich et al. 

2012). Empirical models do not, however, provide an understanding of causal mechanisms, i.e., 

the underlying processes that shape the system and patterns we observe, such as processes 

driving decisions carnivores make about where to settle and whether to stay in or leave a social 

group. Ignoring causal mechanisms may yield models that do not suitably predict conditions 

beyond the spatiotemporal scale for which they were developed (Mitchell and Powell 2002). 

Empirical models may also require extensive continued monitoring and data collection to 

provide sufficient data for predictions. 

An alternative method to empirical modeling is a mechanistic modeling approach. Such an 

approach involves developing theoretical models that capture the hypothesized causal 

mechanisms structuring the system (Mitchell & Powell 2004, 2012). Mechanistic models may 

take the form of individual-based models (IBMs, also known as agent-based models). Although 

often challenging to develop, IBMs provide an ideal means for understanding the mechanisms 

driving territorial behavior. Consistent with the role of individuals in natural selection (Darwin 

1859), IBMs are bottom-up whereby population-level behaviors and patterns emerge from the 

interaction of individuals with one-another and their environment (Grimm and Railsback 2005, 

Grimm et al. 2005, DeAngelis and Grimm 2014). IBMs therefore differ strongly from traditional 

population models that rely on differential equations and impose top-down population 

parameters (e.g., birth rate; DeAngelis and Grimm 2014). As a result, IBMs are less abstract and 

easier to conceptualize. Once designed, IBMs offer “virtual laboratories” for investigating how 

bottom-up influences of individuals give rise to complex organization of the larger system 

(Grimm et al. 2005). Predictions from these models can be compared to actual behaviors of 

animals to identify the model(s) with most support (Mitchell & Powell 2002, 2004, 2007, 2012). 

Resulting models are based on the likely causal mechanisms that shape the system, and thus 

yield reliable scientific inference and are predictive at any spatiotemporal scale. Importantly, 

abundant data are not required for predictions once models are developed. 

2.2 Goals and General Approach 

Our goal is to develop tools to estimate territory and group size of wolves to calibrate estimates 

of abundance of wolves from POM in Montana and Idaho. To achieve this goal, our steps will be 

to: 



1. Develop a suite of mechanistic territory models. These models will capture the 

potential causal mechanisms we hypothesize structure territories of wolves. We will run 

simulations to provide general predictions of territorial behavior under each model.  

2. Identify the most predictive territory model for wolves in Montana and Idaho. We 

will summarize general patterns of territories (e.g., their size and overlap) in Montana and 

Idaho, and compare these patterns to the general patterns predicted by our models from 

Step 1. We will then parameterize the models with data for Montana and Idaho and 

generate specific predictions of territorial behavior under each model. We will compare 

these predictions to actual locations of GPS-collared wolves in Montana and Idaho to test 

for concordance, and use multimodel inference to identify the models that most closely 

predict real territorial behavior. We will conduct sensitivity analyses and provide easy-to-

use deliverables.   

3. Develop a suite of mechanistic group size models. These models will capture the 

potential causal mechanisms we hypothesize structure social behavior of wolves. We will 

run simulations to provide general predictions of social behavior under each model.  

4. Identify the most predictive group size model for wolves in Montana and Idaho. As 

with the territory models, we will test for concordance between model predictions and 

general patterns observed in real wolf packs. We will then parameterize the group size 

models with data for Montana and Idaho and generate specific predictions of social 

behavior under each model. We will compare these predictions to actual group sizes of 

wolves in Montana and Idaho as identified through monitoring data. We will use 

multimodel inference to identify the models that most closely predict actual group sizes. 

As with the territory models, we will conduct sensitivity analyses and provide easy-to-use 

deliverabes. 

5. Develop empirical models for territory and group size. We will compare the results 

from steps 1 – 4 to the empirical models we develop to identify the advantages and 

limitations of each approach.  

6. Calibrate estimates of abundance. We will use our models for territory and group size 

alongside POM to calibrate estimates of abundance of wolves in Montana and Idaho. The 

models will enable region-specific predictions in territories and group sizes to improve 

abundance estimation. These deliverables will furthermore enable managers to predict the 

effects of management actions by adjusting inputs, e.g., to represent increased harvest 

pressure to predict how territories and pack sizes will change under different harvest 

levels. 

2.3 Progress 

Step 1 is complete, fulfilling our first deliverable for Project 1 on target (end of 2017). We 

present in this report a summary of 2 IBMs from the full set created. A full manuscript is in 

preparation.  



2.4 Methods 

Developing IBMs for Step 1 comprised 3 primary components: 

1. Establish a model framework. Before building the models, we determined the general 

framework for their structure based on behavioral theory. 

2. Develop a suite of mechanistic territory models. Each model included hypothesized 

causal mechanisms of territorial behavior.  

3. Run simulations and summarize results. This allowed us to make general predictions 

useful for comparing to patterns in empirical observations.  

2.4.1 Model framework 

Our objective was to model how packs select annual territories to predict such characteristics as 

territory size, location, and overlap to calibrate POM. Accordingly, we aimed to model territory 

selection to represent the sum of a pack’s movements rather than the movements themselves. To 

model territory selection, the landscape can be represented as a continuous grid of patches which 

packs select to add to their territories (e.g., Fig 2.2). For each pack, the sum of patches selected is 

the territory, and the summary statistics of interest such measures as territory size and overlap.  

We selected a mechanistic modeling framework to provide models predictive at any 

spatiotemporal scale and reduce future needs for monitoring wolves and collecting data. We 

designed the mechanistic models based on theory of how carnivores select territories. Carnivores 

are likely adapted to choose economic 

territories that maximize value, i.e., by 

maximizing benefits and minimizing 

costs of territory ownership (Darwin 

1859, Brown 1964, Brown and Orians 

1970, Emlen and Oring 1977, Krebs and 

Kacelnik 1991, Adams 2001). Like other 

carnivores, we also expect that wolves are 

adapted to defend the smallest territory 

possible that meets a threshold of 

resources for survival and reproduction 

(Mitchell and Powell 2004, 2007, 2012).  

Building mechanistic territory models 

necessitated developing a set of 

hypotheses about which benefits and 

costs of territorial behavior are likely 

most fundamental to wolves. 

Conceivably, numerous benefits and costs 

could affect how patches are valued 

Fig. 2.2. Example of a simulated landscape where packs have formed 

territories. Where patches have not yet been selected, bright green 

patches are of high prey benefit; yellow medium, and red low. Gray 

lines represent major roads. Black patches indicate overlapping 

territories.  

Territories 
of packs 



during territory selection. After extensive literature searches and consideration, we hypothesized 

that the causal mechanisms of territorial behavior include the benefits of prey and costs of travel, 

competition, and humans (Brown & Orians 1970; Adams 2001; Mitchell & Powell 2004, 2007, 

2012). Food resources are required for all animals, and black bears (Ursus americanus) were 

shown to structure home ranges optimally with respect to the spatial distribution of food 

resources (Mitchell & Powell 2004, 2007, 2012). Lack of travel costs would imply that territories 

should be limitless in size because packs would travel any distance to reach a patch. Lack of 

competition costs would allow territories to overlap completely. Lastly, humans are an important 

source of mortality for wolves; their presence likely represents a key cost to territorial behavior. 

2.4.2 Mechanistic territory models 

Each competing model defined a specific hypothesis for how packs value patches for territories. 

Our set of models included combinations of hypotheses that wolves select territories based on the 

benefits of prey and costs of travel, competition, and humans. The 2 models we present here (out 

Fig. 2.3. Example simulated landscapes where prey distribution ranges from evenly to highly clumped and prey abundance 

ranges from low to high. Human use also ranges from low to high. Landscapes are 200 × 200 patches in size, and no 2 landscapes 

are exactly alike. Patches were technically scale-less at this stage. In Step 2 they will be set to represent actual spatial extents 

(e.g., 1, 5, or 10 km2) based on the resolution of available data. 
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of our larger subset) hypothesized that wolves select patches based on benefits of prey and A) 

costs of travel and competition, or B) costs of travel, competition, and humans. Model B differed 

by including cost of humans; we hypothesized this cost may have changed post-delisting with 

implementation of harvest. These models will allow us to investigate this possibility in Step 2.  

We designed and tested the models in the program NetLogo (Wilensky 1999). The landscape 

was represented as a grid of 200 × 200 patches on which packs formed territories. Each patch 

was associated with a benefit of prey and costs of travel, competition, and humans. Our goal at 

this stage was to predict how territories would vary under different scenarios. Accordingly, 

within any given simulation, the landscape contained a particular prey distribution (evenly to 

highly clumped), prey abundance (low to high), and level of human use (low to high; Fig. 2.3). 

The simulations also enabled exploring how wolves would structure territories if they perceived 

competition and humans to have various levels of costs. Accordingly, we set the costs of 

competition and humans between low and high for any given simulation.  

Following behavioral theory, packs acquired 

patches for annual territories as economically as 

possible (Fig. 2.4). One pack colonized the 

landscape at a time. The pack selected patches for 

its territory in order of value. Patch values were the 

benefit of prey in a patch discounted by the costs 

associated with the patch (competition and travel 

for Model A, and competition, travel, and humans 

in Model B). A simulation continued until all packs 

formed territories and there were insufficient 

resources to enable more packs to colonize. 

2.4.3 Simulations 

To learn about our models, we completed 

simulations and collected data on the results, e.g., 

each pack’s territory size and overlap. We ran 25 

simulations for each combination of prey 

distribution, prey abundance, human use, cost of 

competition, and cost of humans. This yielded 675 

simulations for Model A and 8100 for Model B 

(this higher value reflected the many combinations 

of human use and cost of humans).  

We used program R (R Core Team 2014) to 

summarize results. Summaries included territory 

size (number of patches), territory overlap 

 

           Landscape:                              Pack: 

 

Fig. 2.4. Structure of territory simulations. A pack selects 

a territory by seeking patches that maximize benefits and 

minimize costs. It stops once it has met a threshold for 

survival and reproduction. The next pack then begins. 



(percentage of territory patches shared with another pack), human avoidance (mean cost of 

humans in each patch in the territory minus the mean cost of humans in the landscape), and 

numbers of territories. We calculated mean results over each prey distribution, prey abundance, 

human use, colonization order, cost of competition, cost of humans, and model.  

2.5 Results  

Our simulations predicted patterns related to territory size, territory overlap, avoidance of 

humans, and number of territories, as follows. 

2.5.1 Territory size 

Territory size varied by prey distribution, prey abundance, and model (Fig. 2.5).  Territories were 

larger in areas of low prey abundance and where prey were evenly clumped. If wolves ignored 

humans (Model A), territory size varied less and generally was smaller at comparable prey 

distributions and abundances than if wolves viewed humans as a cost (Model B). For highly 

clumped prey, however, territories were larger when wolves ignored human costs. 

Territory size also varied somewhat with human use under Model B (Fig. 2.6). As human use 

increased from low to high, mean territory size increased when prey were evenly or moderately 

clumped, and decreased when prey were highly clumped.  

  

Fig. 2.5. Mean territory size decreased as prey became more clumped and as prey abundance increased. Territory sizes were 

larger for Model B (which includes cost of humans) except where prey were highly clumped.   



Mean territory size varied by colonization order (Fig. 2.7). Later colonizers established larger 

territories. Where prey were highly clumped, earlier colonizers had among the smallest territories 

observed and later colonizers the largest. This pattern was strongest for low prey abundance. 

2.5.2 Territory overlap  

Mean overlap among territories was greater where prey were highly clumped and at high 

abundance (Fig. 2.8). Model A predicted greater overlap than Model B at comparable prey 

distributions and abundances, and predicted more overlap where prey were highly clumped. 

Mean overlap among territories depended on cost of competition (Fig. 2.9). Overlap quickly 

dropped to 0% as cost of competition increased.  

2.5.3 Additional responses to humans 

In addition to responses to humans noted above, responses to humans were measured as degree 

of human avoidance. Mean human avoidance varied by cost of humans and level of human use 

(Fig. 2.10). Because packs ignored cost of humans in Model A, they exhibited no avoidance. 

Under Model B, avoidance was greater when cost of humans was higher. As cost of humans 

increased from low to high, avoidance increased most drastically for high levels of human use.  

2.5.4 Number of Territories 

Numbers of territories varied by prey distribution, prey abundance, and model (Fig. 2.7). 

Territories were least numerous where prey abundance was low. More packs formed territories 

where prey were highly clumped. Fewer formed when packs considered human costs (Model B).  

Fig. 2.6. Mean territory size increased or decreased with higher levels of human use, depending on prey distribution.   



Fig. 2.7. Mean territory size varied by colonization order (e.g., 1 = 1st pack to select a territory). Late colonizers established 

larger territories, particularly where prey were highly clumped and at low abundance. Results also provided mean # of packs. 

Fewer packs formed territories on landscapes of lower prey abundances, and when they factored in human costs (Model B). 

Fig. 2.8. Mean territory overlap was greatest where prey were highly clumped. Model A had a wider range of overlap across 

prey distributions and consistently greater overlap than Model B (which includes costs of humans). 



  

Fig. 2.9. Mean territory overlap decreased as cost of competition increased, and varied by model and prey distribution. 

 Low          Med          High              Low          Med         High              Low         Med          High 

Fig. 2.10. Mean human avoidance increased with increasing cost of humans and human use (negative values indicate greater 

avoidance). Human use of “none” indicated 0 costs associated with human use (e.g., Model A). 

 None                Low                 Low/Med  Med/High                     High   



2.6 Discussion  

A primary deliverable for this project is a suite of territory models that will be useful for 

calibrating POM. We have completed our suite of territory models and Step 1 of this project on 

target with the project timeline. The models predict and account for how territory size and 

overlap may vary across Montana and Idaho. Such predictions will be critical for calibrating 

POM estimates in later steps of this project. At this stage, our models allow us to make general 

predictions of patterns we may observe empirically; these predictions are particularly useful for 

Step 2. Below, we discuss how our models will help Montana and Idaho meet management 

needs. We outline our models’ general predictions for territory size, territory overlap, responses 

to humans, and numbers of territories; we also discuss example applications of our models’ 

general predictions. More details, models, and predictions will be presented in our manuscript 

about these models (in progress).  

2.6.1 Territory size 

Ability to predict territory size and its spatiotemporal variation is fundamental to calibrating 

POM estimates. Accordingly, our models allow us to predict territory size and account for how it 

may vary spatiotemporally across Montana and Idaho based on factors such as prey distribution, 

prey abundance, human use, and population size. POM currently relies on the assumption that 

average territory size is 600 km2 statewide. Over- or under-estimating territory sizes will directly 

influence the number of packs predicted by POM. If territories are larger than 600 km2, number 

of packs and overall abundance will be overestimated. If smaller than 600 km2, estimates will be 

biased low. By accounting for variation in territory sizes rather than assuming a consistent 

territory size statewide, future POM estimates for number of packs and abundance of wolves will 

be more accurate and region-specific. Below, we discuss how prey distribution, prey abundance, 

human use, and population size affect predicted territory sizes. 

Because distribution of prey may affect wolf territories (Fig. 2.5), our models will ensure 

territory sizes incorporated into POM remain calibrated across the spatially and temporally 

variable prey populations in Montana. The models demonstrate how prey distribution may affect 

territory size; assuming territory size is consistent regardless of prey distributions may thus over- 

and under-estimate abundance from POM in any given area. Our models predict territories to be, 

on average, larger in areas of Montana and Idaho where prey are more evenly clumped compared 

to more highly clumped. Importantly, these predictions are seasonal. Where ungulates are 

migratory, prey benefit of patches will shift seasonally, causing packs to adjust territories to the 

changing values of patches on the landscape. Once we parameterize the models with empirical 

data in Step 2, the simulations will account for seasonal changes in spatial distributions of 

ungulates. The sum of season-specific predictions will provide year-round territory predictions, 

which will likely be larger in areas where ungulates tend to be more migratory. As an example 

application of these predictions, we might expect seasonal territories to be larger in areas 

primarily occupied by deer (Odocoileus spp., e.g., northwest Montana) versus elk (Cervus 



canadensis, e.g., southwest Montana), because deer tend to be more evenly spaced than large 

gregarious elk herds. Across the year, however, packs in southwest Montana may have larger 

territories if they respond to long distance elk and deer migrations. E.g., elk herds in the 

Yellowstone region may migrate 40 – 60 km (Nelson et al. 2012, Middleton et al. 2013), and 

mule deer (O. hemionus) may migrate 20 – 158 km (Sawyer et al. 2005). In contrast, in the 

rugged terrain of northwest Montana, white-tailed deer (O. virginianus) comprise the bulk of the 

ungulate population and generally exhibit shorter-distance elevational migrations. We would 

thus expect a more consistent prey distribution across seasons in northwest Montana. We expect 

that, after accounting for shifting prey availability, annual territories of wolves in northwest 

Montana will be smaller than those in southwest Montana.  

Given that abundance of prey may also affect wolf territories (Fig. 2.5), our models will ensure 

territory sizes incorporated into POM remain calibrated across variable abundance of prey, 

which will further increase accuracy of POM estimates. The models demonstrate how territory 

size may vary based on prey abundance, e.g., territory sizes may be much larger in areas of low 

prey abundance compared to areas of high prey abundance. Accordingly, POM’s current 

assumption of a consistent territory size statewide may be overestimating number of packs in 

areas of low prey abundance, or underestimating number of packs in areas of high prey 

abundance. As an example application of this prediction, we might expect territory sizes to be 

larger in MFWP Region 5 than Region 3 where the ungulate populations differ by two-fold 

(~78,000 deer and elk in Region 5 versus ~146,000 in Region 3; fwp.mt.gov, accessed 2 Feb 

2018). This may lead POM estimates in Region 5 to be biased high, and, conversely, estimates in 

Region 3 to be biased low.  

Additionally, because human use may affect wolf territories (Fig. 2.6), our models will ensure 

territory sizes incorporated into POM remain calibrated across the spatially and temporally 

variable levels of human use in Montana. Our models demonstrate how territory size may vary 

across Montana and Idaho based on human use of the landscape. Specifically, when prey 

distribution is evenly or moderately clumped, Model B predicts slightly larger territories in areas 

with higher human use compared to areas of lower human use; conversely, where prey are highly 

clumped the model predicts the opposite (i.e., smaller territory sizes where human use is higher). 

As an example application of these predictions, when comparing territories in areas of Montana 

with high human use (e.g., close to cities) to areas of low human use (e.g., designated 

wilderness), we may expect to observe, on average, slightly larger territories where prey are 

evenly or moderately clumped, and slightly smaller territories where prey are highly clumped.  

In Step 2, we will compare general predictions from each model to empirical patterns to ascertain 

model usefulness across spatiotemporal scales; Model B’s predictions for territory sizes will be 

particularly informative. We hypothesized that wolves will associate humans with higher costs 

post-delisting and with implementation of harvest. If our hypothesis is supported and Model B 

suitably captures this behavior, post-delisting we may observe: a) a greater range in territory 



sizes; b) an increased mean territory size where prey distributions are evenly or moderately 

clumped; and c) a decreased mean territory size where prey are highly clumped (Fig. 2.5). We 

also hypothesized that wolves will associate humans with higher costs outside of protected areas. 

Accordingly, we might also expect to observe these patterns outside of Yellowstone National 

Park (YNP) compared to within the park.  

Because wolf population size may also affect wolf territories (Fig. 2.7), our models will ensure 

territory sizes incorporated into POM remain calibrated across the spatially and temporally 

variable wolf populations in Montana. The models predict that the first packs to claim territories 

in an area may have smaller territories than their counterparts that colonize later. Average 

territory size may gradually increase as more packs form territories. Variation in territory sizes 

may similarly increase. Our models predict this pattern may be most noticeable in areas with 

highly clumped prey; where there are already many other packs, the newest packs may have 

among the largest territories observed. As an example application of this prediction, territories 

occupied for the longest in northwest Montana (e.g., some of those in the North Fork) may be 

among the smallest observed in that region. The same may be true for early packs in YNP. 

Furthermore, given the clumped nature of prey resources in YNP, the newest packs may, on 

average, have among the largest territories observed in Montana (if new packs do not simply 

usurp and maintain an old pack’s territory). 

2.6.2 Territory overlap 

Ability to predict territory overlap and its spatiotemporal variation is similarly critical for 

calibrating estimates from POM. As with territory size, our models allow us to predict and 

account for how territory overlap may vary spatiotemporally across Montana and Idaho. POM 

currently assumes overlap among territories is minimal and at consistent levels statewide. Over- 

or under-predicting overlap among territories will directly influence accuracy in the estimated 

numbers of packs from POM. I.e., where overlap among territories is greater than currently 

assumed, abundance may be underestimated, and where overlap is less than currently assumed, 

abundance may be overestimated.  

Because territory overlap may be affected by the distribution and abundance of prey and level of 

human use (Fig. 2.8), our models will ensure territory overlap incorporated into POM remain 

calibrated across the spatially and temporally variable prey populations and levels of human use 

in Montana. Our models predict that territory overlap may be highest in areas where prey are 

more highly clumped and of higher abundance. Territory overlap is also predicted to be lower 

under Model B, demonstrating that if wolves perceive humans to be a cost to territory ownership, 

overlap may be lower. As an example application of these predictions, we might expect overlap 

to be greater in southwest Montana due to a highly clumped elk population (i.e., compared to 

deer, see above) and high abundance of ungulates. Additionally, if there is support for our 

hypothesis that wolves perceive humans as more costly post-delisting, we also may expect to see 

less overlap among territories today than pre-harvest.  



We will further refine the predictive capacity of our models in Step 2 by investigating how 

wolves perceive the cost of competition; this will further calibrate predictions of territory overlap 

to increase accuracy of POM estimates. Our models demonstrate how overlap among territories 

depends on how wolves perceive cost of competition (Fig. 2.9). After parameterizing our models 

with empirical data in Step 2, we will determine which level of costs yields predictions that most 

closely match wolf territories. Real packs will therefore reveal the relative costs of competition 

compared to other benefits and costs of territorial behavior.  

2.6.3 Additional responses to humans 

Ability to predict how wolves will vary territorial behavior in response to human influences is 

useful in several ways for calibrating estimates from POM. As discussed above, our models 

allow us to account for how territory size and overlap may vary spatiotemporally across Montana 

and Idaho in response to humans, and this will directly calibrate POM. Two additional uses merit 

further discussion. First, the models predict how wolves may select territories to avoid humans. 

These predictions will be useful towards identifying the most appropriate models for calibrating 

POM. Secondly, ability to predict responses to human influences means our models will be 

useful for predicting the effects of management actions. We address these two uses below. 

In Step 2, we will identify the most appropriate model for each area of Montana and Idaho to 

calibrate POM predictions. The degree to which territories avoid humans will be particularly 

useful for identifying which models better capture territorial behavior in each area (Fig. 2.10). 

The models demonstrate that if wolves perceive humans as a cost to territory ownership (Model 

B), territories will show avoidance of humans, otherwise they will show no response (Model A). 

Additionally, where human use is higher, Model B predicts that territories will be selected in 

areas that better minimize exposure to people. Where these predictions match empirical 

observations, Model B will be the more appropriate model for calibrating POM; elsewhere, 

Model A may be the more appropriate model. For example, Model A may suitably predict 

territories of wolves within YNP where cost of humans may be less important, whereas Model B 

may better predict territories in more urban areas of Montana. 

Also in Step 2, we will refine the predictive capacity of our models by investigating how wolves 

perceive the cost of humans; this will further calibrate model predictions to increase accuracy of 

POM estimates. Our models predict that avoidance of humans will be stronger if wolves 

associate humans with higher costs (Fig. 2.10). Once we parameterize models with empirical 

data and compare predictions of human avoidance to empirical observations, real packs will 

reveal the relative costs of humans compared to other benefits and costs of territorial behavior. 

Our models will also be useful for predicting the effects of management actions. This will 

directly assist management decision-making and integrate well with the adaptive harvest 

management component of Project 2. E.g., managers will be able to adjust model components to 

understand how various levels of human pressure (e.g., to represent altered hunting pressure) will 



affect human avoidance, territory sizes, etc. Managers will also be able to predict how the 

removal of any given pack (i.e., through depredation removals) may affect other packs.  

2.6.4 Number of territories 

Though not an original deliverable, ability to predict numbers of territories and how this varies 

spatiotemporally can also be useful within the POM framework. Our models predict how number 

of territories may vary by prey distribution, prey abundance, and human use. We could use 

predictions for numbers of territories in two ways. First, we could incorporate these predictions 

within POM to calibrate estimates of colonization and resulting abundance; e.g., new 

colonization may be less likely in areas near predicted capacity. Secondly, we could compare our 

models’ predictions to number of packs estimated by POM as an indicator of accuracy in POM 

predictions. 

Given these potential uses, our models’ ability to predict number of territories may be useful for 

POM. Our models predict slightly fewer packs in areas with evenly dispersed prey, and far fewer 

packs in areas with low prey abundance (Fig. 2.7). Additionally, our models predict somewhat 

fewer packs under Model B, if wolves perceive humans to be a cost of territory ownership. As an 

example application of these predictions, we may expect fewer packs in MFWP Region 5 than in 

Region 3 where prey abundance differs two-fold. We might also expect to see fewer packs post-

delisting or outside of protected areas, if wolves associate humans with higher costs than they did 

pre-harvest.  

2.6.5 Ongoing work 

Our next step will fulfill the final territory model deliverable (due late 2019) by identifying the 

most predictive models from the full suite of models we have developed. We are currently 

preparing to formally summarize general patterns of observed territories in Montana and Idaho 

for Step 2. General concordance between empirical observations and model predictions (e.g., 

including those discussed above) will indicate that the models adequately capture mechanisms of 

territorial behavior. We are also preparing to parameterize the models with empirical data. 

Running simulations with empirical data will allow us to generate specific predictions of 

territorial behavior for wolves in Montana and Idaho. We will compare these predictions to 

territories of GPS-collared wolves to investigate which models most closely predict territorial 

behavior of wolves in Montana and Idaho.  

Our final territory models will provide spatially-explict predictions of territory size and overlap 

to calibrate POM, as discussed above. Furthermore, upon completing the territory models and 

parameterizing them with empirical data, they will also be useful for predicting locations of 

territories. We can use this feature, for example, to further design a finely detailed, spatially-

explicit grid for POM to replace the current 600 km2 grid and further increase accuracy of 

abundance estimates. We can also use this feature to predict locations of future territories (e.g., 



in currently-unpopulated areas of central Montana), or the effects of removals of packs (e.g., 

through depredation removals).    

After identifying the best models, we will determine sensitivity to model inputs and level of data 

required for future use. This will demonstrate model robustness and the minimum data that will 

be required in Montana and Idaho to calculate accurate estimates of abundance in POM. Some 

model components will largely arise from the model itself (i.e., competition) or be easily 

measured using existing, widely-available data (i.e., travel costs that are based on Euclidean 

distance). Other inputs (i.e., prey and humans) will use basic sub-models that we will design to 

require existing data and little updating. More details will follow in subsequent manuscripts and 

reports. 
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